Research in Orthopedics

Robotic Laser Tissue Soldering for Seamless Soft Tissue Fusion

Minimally invasive surgical techniques have dramatically advanced patient care. Despite these advancements, the challenge of suturing soft tissues with precision and without tissue damage remains. In our research we develop a novel approach through feedback-controlled, fluorescent nanothermometry-guided laser tissue soldering, tailored for use in arthroscopic and robotic surgery. 

The evolution of minimally invasive surgery has offered significant benefits over traditional open surgery, including reduced pain, scarring, and recovery times. However, the intricacies of suturing in such restricted environments hinder the effective bonding of soft tissues, which is often critical to patient recovery. Robotic and endoscopic surgeries, while providing enhanced visualisation and precision, still face the hurdle of accurately joining tissues without causing further damage. 

Laser tissue soldering presents a promising solution by enabling seamless tissue fusion without the mechanical trauma associated with suturing. The integration of laser technology into surgical procedures aids in the precise delivery of energy, ensuring controlled and localized tissue bonding. To enhance the safety and effectiveness of laser tissue soldering, we have developed a feedback-controlled system utilizing temperature-sensitive fluorescent nanoparticles. These nanoparticles are embedded within a biocompatible nanoparticle-protein solder, providing real-time temperature feedback to surgeons.

This innovative approach allows for precise control of the laser’s thermal impact on tissues, mitigating the risk of thermal damage during the soldering process. By providing surgeons with immediate thermal feedback, this method ensures damage-free tissue fusion, particularly advantageous in areas where traditional suturing proves challenging or impossible. The fluorescent nanothermometry-guided robotic laser tissue soldering technology also holds significant potential in musculoskeletal surgeries, particularly for delicate tasks such as nerve repair. In procedures involving nerves, precise temperature control is crucial in order to avoid thermal damage and to preserve neurological function. This method offers a controlled and precise approach to tissue fusion, minimizing trauma and potentially improving functional outcomes in musculoskeletal repair scenarios, where traditional suturing methods may risk additional tissue damage or suboptimal healing. By combining the precision of robotic assistance with the advanced capabilities of laser soldering and real-time temperature monitoring, this method paves the way for safer, more effective soft tissue joining that aligns with the overarching goals of minimally invasive surgery - reducing patient trauma and enhancing recovery.

Laserlöten für Wundverschlüsse

Minimalinvasive chirurgische Techniken wie endoskopische und roboterassistierte Operationen haben die Patientenversorgung verbessert, indem sie das chirurgische Trauma verringern, die Erholung beschleunigen und die Dauer eines Krankenhausaufenthalts verkürzen. Trotz dieser Fortschritte bleibt es eine Herausforderung, weiches Gewebe präzise und ohne Gewebeschäden zu verbinden, was durch das Fehlen von Tastempfinden und den Hebeleffekt bei diesen Verfahren noch verschärft wird. An der Universitätsklinik Balgrist erforschen und entwickeln wir einen neuartigen Ansatz, um diese chirurgischen Herausforderungen durch das Laserlöten zu bewältigen, das besonders für den Einsatz in arthroskopischen und robotischen Chirurgiekontexten konzipiert wurde. Robotisches Laserlöten ermöglicht einen schonenden und sicheren Wundverschluss von empfindlichen Weichgeweben, besonders von kleinen Gefässen oder Nerven.

At a Glance

iSoldering

Key Collaborators
Project lead: Prof. Dr. Inge K. Herrmann
Oscar Cipolato

Departments and Partners
Balgrist University Hospital, Ingenuity Lab 
University of Zurich
Empa
ETH Zurich
University of Lübeck
Fraunhofer IMTE
Charles University Pilsen

Clinical Relevance
Enabling damage-free soft tissue repair

Further Information 
> Ingenuity Lab