Research in Orthopedics

FAROS—Intuitive Multisensory Robotics for Spine Surgery

FAROS introduces a novel approach to surgical robotics, integrating multisensory technologies and artificial intelligence to advance autonomy and precision in operative procedures.

Will surgical robots ever be able to operate autonomously? State-of-the-art systems used in surgery are controlled by skilled surgeons, but currently there is no robotic autonomy involved. While modern robotic approaches target absolute geometric precision, functional accuracy (relative to targeting anatomic and functional structures) is what matters in surgery. The Functionally Accurate Robotic Surgery (FAROS) project, is an EU-funded Horizon 2002 initiative (101016985) that aims at improving functional accuracy by embedding physical intelligence in surgical robotics. FAROS was initiated in January 2021 by an international consortium of fi ve collaboration partners: 4 academic institutions — the University of
Zurich and Balgrist University Hospital in Zurich, the Sorbonne University in Paris, King's College London, KU Leuven in Brussels — and one industrial partner, SpineGuard.

Innovative Integration of Technologies
FAROS integrates advanced multisensory technologies and artificial intelligence to develop robotic systems with greater autonomy, with the aim of enhancing precision and functionality in surgical procedures. FAROS's core innovation lies in its approach to surgical robotics, which prioritizes functional accuracy over traditional metrics like geometric precision. By harnessing a combination of ultrasound and hyperspectral imaging, alongside auditory and haptic feedback, the project aims to enable robots to perform surgical tasks autonomously with a level of precision and adaptability that was previously unattainable.

This approach mirrors surgeon-like behavior, emphasizing the importance of functional outcomes in surgical success. The project concentrates on two critical use cases in spine surgery: pedicle screw placement (PSP) and endoscopic lumbar discectomy (ELD), characterized by their high level of complexity and their criticality in terms of surgical inaccuracies. By integrating various non-visual sensing technologies like ultrasound, contact microphones, and impedance and force sensors directly at the drilling end-effector, FAROS aims to reduce the risk of complications and enhance surgical outcomes. A primary goal is to enable the system to detect and prevent screws from breaching critical anatomical structures, with Balgrist playing a pivotal role in developing and validating vibroacoustic sensing technologies. Another goal is to develop a technology that provides surgeons with greater flexibility through smart intraoperative tools for decision-making.

A Collaborative Journey Towards Innovation
The incremental development of FAROS has been driven through a series of integration weeks, in which the entire research team meets on site to improve the current version of the integrated robotic prototype. These sessions have been instrumental in the iterative testing and refinement of the FAROS technologies, facilitating the exchange of knowledge and expertise among the partners and the integration of the diff erent technologies. The final integration week took place in April 2024 in the new Balgrist research infrastructure: the OR-X, which is designed specifically for hosting events of this caliber and complexity, enabling the validation of the FAROS robotic system under close-to-real surgical conditions. For the final validation, all of the researchers from the different partner institutions will come together under the same roof for 10 days of technical integration, testing, and validation of the FAROS robotic system.

Looking Ahead: the Future of Surgical Robotics
As FAROS approaches its conclusion in June 2024, the project exemplifies the importance of synergy between academic research, clinical application, and industrial innovation. This Horizon 2020 project not only promises to advance the field of roboticassisted surgery but also exemplifies the transformative power of integrating multisensory technologies and artificial intelligence in healthcare. The implications of FAROS extend beyond its immediate applications, offering a glimpse into a future where technology and human expertise combine to redefine the possibilities of medicine.

FAROS: ein Fortschritt in robotischer Chirurgie

Können Chirurgieroboter eigenständig operieren? Heutige chirurgische Roboter werden von erfahrenen Chirurginnen und Chirurgen gesteuert und sind noch nicht in der Lage, einzelne Operationsschritte autonom durchzuführen. 

Das durch die Europäische Union unterstützte Horizon-2020-Projekt FAROS (Funktionell Akkurate Robotische Chirurgie) begann im Januar 2021 mit der Mission, die Intelligenz von chirurgischen Robotiksystemen zu verbessern. Ein internationales Konsortium von vier akademischen Institutionen – die Universität Zürich und Universitätsklinik Balgrist in Zürich, die Sorbonne Université in Paris, das King's College London, die KU Leuven in Brüssel – und dem Industriepartner SpineGuard arbeitet daran, durch die Integration fortschrittlicher multisensorischer Technologien und künstlicher Intelligenz die Präzision und die Autonomie in chirurgischen Verfahren zu erhöhen. FAROS konzentriert sich auf die Verbesserung der funktionalen Genauigkeit und verwendet Ultraschall- und hyperspektrale Bildgebung sowie auditorisches und haptisches Feedback, damit Chirurgieroboter ähnlich vielseitig wie Chirurginnen und Chirurgen operieren können. Im Fokus stehen komplexe Wirbelsäuleneingriffe wie die Pedikelschraubenplatzierung und die endoskopische Lendenwirbeldissektion, wobei innovative Sensortechnologien wie Ultraschall und Impedanzsensoren die Risiken von Komplikationen minimieren und die Qualität der chirurgischen Ergebnisse verbessern sollen. Die Universitätsklinik Balgrist spielte insbesondere bei der Entwicklung und Validierung von vibroakustischen Sensortechnologien eine Schlüsselrolle. 

Die inkrementelle Entwicklung von FAROS wurde durch regelmässige Integrationswochen vorangetrieben, in denen das FAROS-Konsortium vor Ort die neuste Version des robotischen Prototyps verbessern konnte. Die finale Integrationswoche fand im April 2024 in der neuen Forschungsinfrastruktur des Balgrist, dem OR-X, statt, wo die Validierung des FAROS-Systems unter nahezu realen Bedingungen ermöglicht wurde. Das Projekt unterstreicht die Bedeutung der Synergie zwischen akademischer Forschung, klinischer Anwendung und industrieller Innovation. FAROS verspricht nicht nur Fortschritte im Bereich der roboterassistierten Chirurgie, sondern zeigt auch die transformative Kraft der Integration multisensorischer Technologien und künstlicher Intelligenz im Gesundheitswesen auf und bietet einen Ausblick auf eine Zukunft, in der Technologie und Expertenwissen die Medizin neu definieren.

At a Glance

Functionally Accurate Robotic Surgery (FAROS): Embedding Physical Intelligence in Surgical Robotics

Key Collaborators
Project lead and Principal Investigator:
Prof. Dr. Philipp Fürnstahl
Investigators: Prof. Dr. med. Mazda Farshad, MPH, Prof. Dr. med. Reto Sutter
Scientific Coordination: Dr. Fabio Carrillo
Dr. med. Christoph Laux, Dr. med. Nicola Cavalcanti, PhD, Aidana Massalimova, PhD

Departments and Partners
Balgrist University Hospital: Dept. of Research in Orthopedic Computer Science, Dept. of Orthopedics and Spine Surgery Unit, Dept. of Radiology, OR-X
University of Zurich (UZH)
KU Leuven, Brussels, Belgium (KUL)
King’s College London, UK
Sorbonne University, Paris, France (SU)
SpineGuard, Paris, France

Clinical Relevance
FAROS represents a first step into bringing Robotic sensor technologies into the surgical field, specifically for the application of spinal surgery. Robotic technologies can support surgeons in critical situation by bringing additional information and increasing the execution precision of tasks. Additionally, by leveraging the capabilities of Robotic Ultrasound for 3D reconstruction of anatomical structures, the amount of ionizing radiation for both patient and surgical personnel can be substantially decreased.

Further Information 
> Project FAROS